Fast Multipole Boundary Element Method in 2D Elastodynamics

نویسندگان

  • Takuo FUKUI
  • Koichi INOUE
چکیده

This paper is concerned with the fast multipole boundary element method (FMBEM) in two dimensional frequency domain elastodynamics. The fast multipole method (FMM) is derived by the Galerkin vector in the elastodynamic field. The elastodynamic field is expressed as the sum of the longitudinal and transverse wave fields, and the Galerkin vector FMM is simply derived from the scalar wave FMM. Multipole expansions of the influence functions are derived to apply the FMM to the boundary element method. A numerical experiment showed that the complexity and the required memory are of O (N). As the example the multiple-hole elastic scattering problem was solved using the FMBEM, and the results show the applicability of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances on the fast multipole accelerated boundary element method for 3D time-harmonic elastodynamics

This article is mainly devoted to a review on fast BEMs for elastodynamics, with particular attention on time-harmonic fast multipole methods (FMMs). It also includes original results that complete a very recent study on the FMM for elastodynamic problems in semi-infinite media. The main concepts underlying fast elastodynamic BEMs and the kernel-dependent elastodynamic FM-BEM based on the diago...

متن کامل

Application of Multipole Expansions To Boundary Element Method

The Boundary Element Method (BEM) has long been considered to be a viable alternative to the Finite Element Method (FEM) for doing engineering analysis. The BEM reduces the dimensions of the problem by one and leads to smaller system of equations. One of the inherent limitations of the BEM has been the long time required for the solution of large problems. This makes the BEM prohibitively expen...

متن کامل

A fast multipole boundary element method for 2D viscoelastic problems

A fast multipole formulation for 2D linear viscoelastic problems is presented in this paper by incorporating the elastic–viscoelastic correspondence principle. Systems of multipole expansion equations are formed and solved analytically in Laplace transform domain. Three commonly used viscoelastic models are introduced to characterize the time-dependent behavior of the materials. Since the trans...

متن کامل

An adaptive fast multipole boundary element method for the Helmholtz equation

The present paper intends to couple the Fast Multipole Method (FMM) with the Boundary Element Method (BEM) in 2D acoustic problems. The evaluation of the integrals involved in the governing Boundary Integral Equations (BIEs) is fasten by the FMM contribution. The multipole expansion and some suitable moment translations make the procedure much faster if compared to the conventional approach. Th...

متن کامل

A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation

A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010